
 1

Bringing life into Open
World Cities

How to populate cityscape environments with “Non-Playable

Characters” pedestrians for open world games.

Master’s degree « jeux et médias interactifs numériques » cohabilited by the Conservatoire

national des arts et métiers et l’Université de Poitiers, Angoulême

BADANA Tristan,
tristan.badana@gmail.com,

CNAM-ENJMIN

July-August 2022

Tutors : LEVIEUX Guillaume & BUENDIA Axel

mailto:tristan.badana@gmail.com

 2

1 INTRODUCTION ... 3

1.1 Convincing NPCs for video games .. 3

2 INTERACTIONS WITH THE ENVIRONMENT .. 3

2.1 Smart Objects ... 3

2.2 Additional features ... 4

3 INTERACTIONS WITH OTHER NPCS ... 4

3.1 Smart Location ... 4

3.2 Smart Objects or Smart Locations ... 4

3.3 NPC Groups ... 5

4 BEHAVIOR .. 5

4.1 Navigation ... 5

4.2 Behavior transition ... 5

5 NPC SPAWNING ... 6

5.1 Spawning System ... 6

5.2 Context spawning ... 6

6 OPTIMIZATIONS .. 7

7 CONCLUSION ... 7

 3

ABSTRACT

This article aims to present and combine different

methods for populating video game cityscapes

environment with NPCs. This paper specifically

focuses on creating pedestrians who interact with their

environment and with each other, as well as how to

dynamically spawn them.

CCS CONCEPTS

• Computing methodologies → Artificial intelligence

→ Distributed artificial intelligence → Multi-agent

systems

KEYWORDS

video game, NPC, open world, city, population,

immersion, smart objects, behavior, spawning

1 INTRODUCTION
Open world games are designed to immerse players

into vast worlds they can explore and play with. To

create lively urban cities, they are populated with

pedestrians Non-Playable Characters (NPCs) which

explore and interact with the game’s environment.

However, manually placing and programming each

NPC individually is both time and resource consuming.

To address this, the general approach is to make their

logic as systemic as possible and generate their

placement procedurally.

1.1 Convincing NPCs for
video games

First, it is essential to define what are convincing

NPCs for video games.

This paper focuses on presenting and combining

different methods to populate cityscape environments

with pedestrians for open world games like GTA V,

Cyberpunk 2077 or The Witcher. In these games, they

dynamically spawn, roam the city, interact with their

environment and interact with each other.

The subject being vast and tightly bound to game

design, we won’t be able to cover every aspect of the

implementation or go too deeply into certain details.

This paper focuses on giving a flexible base which can

be iterated and optimized for similar games.

For this reason, we won’t or briefly be talking about

vehicles and traffic navigation, online constraints,

reaction to player’s actions, tooling and crowd

simulation.

These aspects remain important for creating immersive

open world games, and this proposition aims to be

compatible with their implementation.

2 INTERACTIONS WITH THE
ENVIRONMENT

The first step to making a faithful representation of

pedestrians is to have them interact with their

environment. People generally perform a variety of

activities when they are outside, such as sitting on a

bench to rest, stopping at a store window or retrieving

money at an ATM.

Each object needs to have a specific behavior the

NPC can perform after going toward it.

But putting each behavior into the pedestrians’ logic

can complicate future features’ development. To

prevent this and increase flexibility, these behaviors can

be delegated to the objects in the environment instead.

This approach was notably explored in The Sims where

the AI interacts with “Smart Objects” to perform

actions like cooking, reading a book and more.

2.1 Smart Objects
Smart objects (SO) are static assets in a scene which

carry information about how they can be used.

For instance, a bed can carry information on how an

agent can sleep on it. It even provides the necessary

animation data for doing so. This allows the creation of

ambient behaviors without altering the AI of the NPCs.

Figure 1. Example of a Smart Object with its

different interactions.

Smart Objects control NPCs' interactions using a

Finite State Machine (FSM) or a Behavior Tree (BT).

They mostly aim to play a sequence of animations.

Once it is done, the agent goes back to its previous

activities.

There are two approaches to having NPCs use SO:

either NPCs seek out nearby Smart Objects to interact

with, or the Smart Objects attract NPCs.

In open world games, the latter is more effective

because we want many people to populate our city

while keeping their logic decoupled from Smart

Objects’ one; If a Smart Object is not already in use, it

periodically emits signals to nearby pedestrian and have

a chance of attracting one.

 4

2.2 Additional features
Smart Objects are very flexible and have a great

potential. They can be used in numerous ways to adapt

to different kinds of open world games and bring as

much life as possible. Below are some commonly

implemented additional features :

- Invisible Smart Objects: Smart Objects do

not need to be visible; they can be locations

where an agent performs specific animations.

For example, an invisible SO could be placed

near a monument where NPCs could take

photos with their phone.

- Varied interactions: Putting different

interactions and animation sequences on one

SO adds variety and personality to their users.

- Smart Objects for specific NPCs: to bring

diversity to the world, some Smart Objects

can be designed for specific types of NPCs.

Meaning only tourists would use a monument

SO for example. This feature implies

modifying NPCs by giving them at least an

occupation attribute.

There are many more additional features which can

be added on top of its basic implementation. This

proves they are a great addition to open world games,

and this is why they frequently used in this genre. For

more information about their implementation, refer the

Appendix 1.

3 INTERACTIONS WITH
OTHER NPCS

The second aspect of making ambient life more

believable in a cityscape environment is to make NPCs

engage with each other. This is important because it

creates group dynamics and allows for more complex

interactions.

Based on the idea of delegated logic, Smart Locations

take inspiration from Smart Object but focus on NPC-

to-NPC interactions.

3.1 Smart Location
“Smart Location” (SL), or “Smart zones” are similar

to Smart Objects : they also carry information about

how they can be used and provide the necessary

animation data for doing so, allowing to create ambient

behaviors without modifying the AI of the citizens. But

instead of representing 1 object which can be used by 1

NPC, they are invisible objects that refer to multiple

concrete objects.

They also differ on how their interactions – referred

as actions – are triggered. For that they use 3 elements:

- Roles: Define which kind of actors can

participate in a script and how many. These are

dynamically attributed as a participant joins the

Smart Location. For example, there could be 3

agents with the role customer, and 1 with the

role waiter.

- Rules: Indicate what actions the actors can

perform based on prequalification. For

instance, if there are at least 2 Customers at a

restaurant table, one will Talk and the other

Listen. If there is at least 1 Waiter and 3

Customers, one of them will place an Order.

- Blackboard / Tuple Space: Serves as a shared

space to store and access information.

Figure 2. Example of a Smart Location

“Restaurant Table” with the different roles, actions

and an example of Tuple Space.

Every interval of time, Smart Locations inspect each

NPC and check if they validate the prequalification of

each rule based on their role and the blackboard. If they

do, the inspected NPC perform the action bound to the

rule.

A particularly advanced implementation of Smart

Location can be found in Final Fantasy XV[1] where

developers used a Tuple Space instead of a Blackboard

for multiple reasons such as tooling and gain of time for

programmers. For more information about its

implementation, you can read the Appendix 2.

3.2 Smart Objects or Smart
Locations

Like Smart Objects, Smart Locations delegate

interactions with environment but also support NPC-to-

NPC interactions. Moreover, all additional features

discussed in “2.2 Additional features” apply to SL. But

should Smart Objects and Smart Locations coexist in

the same game?

Implementing both could result in implementing

features twice. But separating them makes for a clearer

level design and a better behavior management.

Furthermore, some games allow the player to use SO

 5

like in The Sims. Therefore, the decision to use one or

both is to be considered and depends on the game.

3.3 NPC Groups
The second method for allowing NPCs to interact

with each other is by creating grouped behaviors.

The chosen group system takes inspiration from the

Smart Location concept. A group is an invisible game

object dynamically instantiated. Like SL, a group has

assigned roles : 1 Leader and up to 4 Followers, forming

groups of 2 to 5 individuals. These roles are stored in a

blackboard bound to the group.

The Leader decides who is talking by picking a random

person in the group. Meanwhile, the blackboard will

store who is the current talker and play a talking

animation for them, all the other group members will

look at the current talker and play a listening animation.

If the Leader is unable to lead anymore (due to death or

despawning), another Leader is chosen among the

members of the group.

Finally, there are 2 ways of forming groups. Firstly,

when NPCs are using an SL, they are grouped with

others sharing the same role.

The second way is to spawn NPCs near each other and

create a group. More details at 5. SPAWNING NPC.

Combining SL and NPC Groups allows for simple

interactions while walking and more complex ones

when using objects in their environment.

4 BEHAVIOR

4.1 Navigation
Pedestrian navigation typically involves them

roaming the cityscape. To simplify and optimize their

movements, a simple navigation graph is sufficient.

First, setting up a Navmash allows pedestrians to walk

while avoiding obstacles. Placing nodes on the

NavMesh along the roads or sidewalks and linking

them creates lanes the NPCs will be able to walk by.

Figure 3. Lanes used in Assassin’s creed Odyssey.

GDC Conference : Virtual Insanity.

Via YouTube
(https://www.youtube.com/watch?v=a09vnDjmY_E)

Finally, to have NPCs roam in the city, they are

given a far Node as a destination when they spawn and

use the A* algorithm[2] to navigate through these nodes.

If the lanes are not obstructed, a navmesh isn’t required

for the roaming navigation. However, since they may

need to perform other behaviors (for instance : flee from

danger), it is always practical to set up one.

To enhance realism, some features can be added. To

begin with, nodes can be given a width. By applying a

random angle and random distance offset to each NPCs

on the position of the nodes (based on its width and the

direction of the lane), wider lanes are created. This

enables NPCs to walk side by side and prevent them

from all walking in the center of the road. Moreover,

implementing Reciprocal Velocity Obstacles (RVO)[3]

helps them dynamically avoid each other.

Figure 4. Schematic drawing of a lane using node

width to create large walkable areas.

Finally, for crossroads, the A* algorithm can be

modified to support temporarily disabled nodes. If the

next target node of an NPC is disabled, it waits at its

current node until it’s re-enabled.

When an NPC is not part of a group or using a

SO/SL, it enters a roaming state. During it, it looks for

a relatively distant node in the road navigation graph

and go toward it as said earlier.

For groups, only the Leader navigates like standard

pedestrians. Followers walk beside it, using its position

and a calculated offset. To prevent followers from

walking on the road, this offset is dynamically

calculated based on the width of the next node in the

Leader’s path, similarly to how the random offset was

determined for navigation. The formula is as follows:

posFollower =
posLeader + clamp (offset * LeadNextNodeWidth/2
,-maxDist, maxDist)

4.2 Behavior transition
With this implementation, the NPCs have 3 types of

behaviors: Solo, Grouped and Delegated (for Smart

Objects and Locations).

The solo and grouped behavior discussed here are

relatively simple. However, depending on the game,

different type of groups, or more complex solo behavior

https://www.youtube.com/watch?v=a09vnDjmY_E

 6

may be more suited, such as displaying emotions, or

reacting in different ways to the player actions.

A simple and flexible solution is to use an FSM or a BT

for solo behavior, rather than separate FSMs for each of

the three behavior types. This FSM deactivates when

the NPC joins a group or interacts with a SO/SL and is

reactivated by the object once its delegated logic ends.

On top of this, giving each NPCs a local blackboard

which stores references to which group they belong to

or which SO/SL they are using can allow to send signals

when necessary.

5 NPC SPAWNING
NPC spawning in open world games is crucial to

immersion, but several constraints must be considered :

- Performances: The player should feel like the

NPCs are always roaming the city, but due to

performance issues, pedestrians cannot be on

the map at every moment of the game.

- Visibility: As such, the spawning should be

hidden from the player, as seeing the NPCs

appear would break the immersion.

- Realism: Pedestrian should spawn at logical

locations or areas people typically walk like

sidewalks, avoiding lanes where cars ride.

- Density: Population density should vary based

on location; a shopping district is more

crowded than an industrial one.

5.1 Spawning System
A solution which addresses most of the issues is to

use a grid to spawn NPCs.

Figure 5. Example of grid using GTA V map.

This grid covers the entire city. Each tile needs to be

at least as large as the chosen render distance of NPCs

of the player’s camera to ensure the spawning is hidden

from the player.

Pedestrians are spawned in the tile the player is

currently in and its adjacent tiles (9 tiles in total). Using

this system, NPCs are only present near the player.

To optimize further, instead of spawning NPCs

whenever the player changes tile, a collider is put

around the tile the player is currently in, called the

“Respawn Trigger”.

When the player reaches the edge of the Respawn

Trigger, NPCs are spawned in the tile the player is

currently in and the adjacent ones (if NPCs are not

already spawned), the NPCs in the previously adjacent

tiles are despawned. The Respawn Trigger then moves

to the center of the player's current tile. For more details

on the Respawn Trigger, refer to Appendix 3.

To ensure that pedestrians spawn on the sidewalks

and roads they are supposed to walk, they are spawned

around the nodes of the roads used for their navigation.

Using the width of the nodes to prevent them all

walking in the center of the road.

Since pedestrians begin walking before the player sees

them clearly, their exact spawn positions are difficult to

notice.

Moreover, assigning each tile a specified number of

NPCs they should spawn helps control density.

To create a realistic ambient life NPCs should be

spawned on Smart Objects and Smart Locations in

priority. This involves providing these objects

instantiating instruction and filling their blackboards at

specific action steps. Spawning on SOs also allows to

spawn agents on unreachable places such as terraces or

building interiors.

Furthermore, groups can be spawned by placing

multiple NPCs at the same node and create a group

object to represent them.

Additionally, spawners activated by the Respawn

Trigger can be placed to spawn NPCs. Lastly, to

prevent heavy spawning cost, using pooling avoids

repetitive instantiations.

With this implementation, pedestrians are only

present around the player at a maximum of twice their

render distance. They only despawn when they are too

far from the player and spawn at coherent locations.

5.2 Context spawning
A common feature in open world games is context-

based spawning. For example, policemen or firetruck

may spawn due to player actions or the state of the

world. A grid system supports this well as it can spawn

these NPCs at adjacent tiles. However, it is important

maintain game balance, this can be done by fixing a

limit of enemies or type of NPCs which can be present

simultaneously.

This approach was chosen for Saints Row 4.

 7

6 OPTIMIZATIONS
To increase the number of NPCs displayed on

screen, Levels of Detail (LOD) is an effective solution,

not just for visuals but also for logic.

In Assassins Creed Unity[4], a 3-tier LOD is used for

NPCs based on distance. The closest ones have their

full logic, animation and their detailed model. The ones

in the second LOD tier have fewer bones, simpler AI,

limited 3d models and less complex animations.

Finally, the furthest pedestrians have even more

simplified AI, models, bones, but also a simplified

collision system.

Figure 6. Schematic drawing representing different

LOD tiers based on distance.

Another optimization consists of simplifying NPCs’

behavior based on how long the player last saw them.

With what was presented in this paper, these two

solutions can be applied by disabling RVO few seconds

after an NPC is out of sight when it’s in the second level

of LOD. At the third level, their physic can be

simplified by allowing pedestrians to walk through

each other and looping the current actions in SO/SL and

groups.

Implementing this requires careful handling of

transitions between LODs, notably on the AI transition

and the bone retargeting system.

7 CONCLUSION
With this implementation, pedestrians dynamically

spawn as the player explores the city. They can be seen

walking along the sidewalks or interacting with objects

in their environment. Some will form groups in which

they interact with each other.

Of course, some aspects of populating cityscape

environments can be simplified and depend on the

available budget. Different games prioritize specific

features, like Watch Dogs 2 which emphasizes NPC

interactions that create emergent situations, while Final

Fantasy XV centers on a variety of environmental

interactions.

As mentioned in the introduction, there are still

several aspects of populating open worlds which were

not covered in this paper. Cost wise, NPCs require a

significant amount of 3D assets, sounds and

animations. Effective tools are also crucial as they give

Level Designers more control and can save much

development time. Also, more optimizations can be

made and adapted to the game but should consider

possible online constraints.

Many of these concepts have already been

implemented in existing games. For instance, Smart

Locations are utilized in Final Fantasy XV, the lane

system is part of the Mass plugin for Unreal Engine and

Assassin’s Creed Odyssey also employed a similar

system. The Spawning System and the Group Behavior

are exceptions as the first one draws inspiration from

Unreal Engine’s world partitioning system and the

second from Assassin’s Creed Odyssey’s groups.

While it would be valuable to combine all these

concepts into one project to validate the ideas presented

in this paper, doing so would require significant time

and resources. This is why no implementation is

provided here.

 8

References
[1] Hendrik Skubch, 2015, Ambient Interactions Improving

Believability by Leveraging Rule-Based AI, Retrieved

July 25, 2024 from

https://www.gameaipro.com/GameAIPro3/GameAIPro3_

Chapter35_Ambient_Interactions_Improving_Believabili

ty_by_Leveraging_Rule-Based_AI.pdf

[2] Wikipedia, A* search algorithm, Retrieved June 21,

2024, from

https://en.wikipedia.org/wiki/A*_search_algorithm

[3] Markus Buchholz, 2023, Reciprocal Velocity Obstacles

(RVO) for collision avoidance in C++, Retrieved June

21, 2024, from

https://markus-x-buchholz.medium.com/reciprocal-

velocity-obstacles-rvo-for-collision-avoidance-in-c-

d7f4e7959417

[4] Ubisoft Francois Cournoyer, 2015, Massive Crowd on

Assassin's Creed Unity: AI Recycling. Retrieved July 24,

2024 from

https://www.youtube.com/watch?v=Rz2cNWVLncI

Resources
For more precisions on certain subjects, you can consult these external

resources which were also used for writing this paper. Some appear in

multiple categories since they discuss multiple subjects.

Spawning

• Living City in Mafia 2 : GDC session, 2010, Jan

Kratochvvil, https://gdcvault.com/play/1013704/Living-

City-in-Mafia

• Virtual Insanity: Meta AI on Assassin's Creed: Origins :

GDC session, 2018, Charles Lefebvre,

https://www.youtube.com/watch?v=a09vnDjmY_E

• Free Range AI: Creating Compelling Characters for

Open World Games : GDC session, 2014, Jeet Shroff and

Aaron Canary

https://www.youtube.com/watch?v=jDCFMITrtHc

Smart Objects

• Knowledge is Power: An Overview of Knowledge

Representation in Game AI : GDC Session, 2018, Daniel

Brewer and Rez Graham,

https://www.youtube.com/watch?v=Z6oZnDIgio4

• Not Just Planning STRIPs for Ambient NPC Interactions

in Final Fantasy XV : Nucl.ai 2015 conference, 2015,

Hendrik Skubch,

https://www.youtube.com/watch?v=LwuJekXTozo

• Ambient Interactions : Improving Believability by

Leveraging Rule-Based AI, Game AI Pro 3, 2017,

Hendrik Skubch,

https://www.gameaipro.com/GameAIPro3/GameAIPro3_

Chapter35_Ambient_Interactions_Improving_Believabili

ty_by_Leveraging_Rule-Based_AI.pdf

• Helping It All Emerge: Managing Crowd AI in Watch

Dogs 2 : GDC Session, 2017, Roxanne Blouin-Payer,

https://www.youtube.com/watch?v=LHEcpy4DjNc

• Smart Zones to Create the Ambience of Life, Game AI

pro 2, 2015, Etienne de Sevin, Caroline Chopinaud, and

Clodéric Mars,

https://www.gameaipro.com/GameAIPro2/GameAIPro2_

Chapter11_Smart_Zones_to_Create_the_Ambience_of_L

ife.pdf

Navigation

• Virtual Insanity: Meta AI on Assassin's Creed: Origins :

GDC session, 2018, Charles Lefebvre,

https://www.youtube.com/watch?v=a09vnDjmY_E

NPCs’ Behavior

• Helping It All Emerge: Managing Crowd AI in Watch

Dogs 2 : GDC Session, 2017, Roxanne Blouin-Payer,

https://www.youtube.com/watch?v=LHEcpy4DjNc

• Not Just Planning STRIPs for Ambient NPC Interactions

in Final Fantasy XV : Nucl.ai 2015 conference, 2015,

Hendrick Skubch,

https://www.youtube.com/watch?v=LwuJekXTozo

• AI Summit: Branching Out: 'Watch Dogs Legion's'

Architecture for Group AI Behaviours : GDC Session,

2021, Christopher Dragert and Patrick McKenna,

https://gdcvault.com/play/1027239/AI-Summit-

Branching-Out-Watch

Cars

• AI Summit: Cities at Scale: Simulating Street Life on a

Budge : GDC session, 2022, Sandy MacPherson,

https://gdcvault.com/play/1027985/AI-Summit-Cities-at-

Scale

• Living City in Mafia 2 : GDC session, 2010, Jan

Kratochvvil, https://gdcvault.com/play/1013704/Living-

City-in-Mafia

https://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter35_Ambient_Interactions_Improving_Believability_by_Leveraging_Rule-Based_AI.pdf
https://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter35_Ambient_Interactions_Improving_Believability_by_Leveraging_Rule-Based_AI.pdf
https://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter35_Ambient_Interactions_Improving_Believability_by_Leveraging_Rule-Based_AI.pdf
https://en.wikipedia.org/wiki/A*_search_algorithm
https://markus-x-buchholz.medium.com/reciprocal-velocity-obstacles-rvo-for-collision-avoidance-in-c-d7f4e7959417
https://markus-x-buchholz.medium.com/reciprocal-velocity-obstacles-rvo-for-collision-avoidance-in-c-d7f4e7959417
https://markus-x-buchholz.medium.com/reciprocal-velocity-obstacles-rvo-for-collision-avoidance-in-c-d7f4e7959417
https://www.youtube.com/watch?v=Rz2cNWVLncI
https://gdcvault.com/play/1013704/Living-City-in-Mafia
https://gdcvault.com/play/1013704/Living-City-in-Mafia
https://www.youtube.com/watch?v=a09vnDjmY_E
https://www.youtube.com/watch?v=jDCFMITrtHc
https://www.youtube.com/watch?v=Z6oZnDIgio4
https://www.youtube.com/watch?v=LwuJekXTozo
https://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter35_Ambient_Interactions_Improving_Believability_by_Leveraging_Rule-Based_AI.pdf
https://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter35_Ambient_Interactions_Improving_Believability_by_Leveraging_Rule-Based_AI.pdf
https://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter35_Ambient_Interactions_Improving_Believability_by_Leveraging_Rule-Based_AI.pdf
https://www.youtube.com/watch?v=LHEcpy4DjNc
https://www.gameaipro.com/GameAIPro2/GameAIPro2_Chapter11_Smart_Zones_to_Create_the_Ambience_of_Life.pdf
https://www.gameaipro.com/GameAIPro2/GameAIPro2_Chapter11_Smart_Zones_to_Create_the_Ambience_of_Life.pdf
https://www.gameaipro.com/GameAIPro2/GameAIPro2_Chapter11_Smart_Zones_to_Create_the_Ambience_of_Life.pdf
https://www.youtube.com/watch?v=a09vnDjmY_E
https://www.youtube.com/watch?v=LHEcpy4DjNc
https://www.youtube.com/watch?v=LwuJekXTozo
https://gdcvault.com/play/1027239/AI-Summit-Branching-Out-Watch
https://gdcvault.com/play/1027239/AI-Summit-Branching-Out-Watch
https://gdcvault.com/play/1027985/AI-Summit-Cities-at-Scale
https://gdcvault.com/play/1027985/AI-Summit-Cities-at-Scale
https://gdcvault.com/play/1013704/Living-City-in-Mafia
https://gdcvault.com/play/1013704/Living-City-in-Mafia

 9

Appendices

A1 SmartObject implementation
Below is a simplified implementation of Smart

Objects for a very basic context, it aims to clarify how

they work.

Figure 7. Simple class diagram of Smart Object

(doesn’t take tooling into account)

A SmartObject script can be attached to a

GameObject in a scene. It has 2 main public fields:

- emitionRate: control the frequency of signal

emissions to find users,

- interaction: a list of Interaction the NPC can

perform.

When the LookForUser() function finds a user one

of the interactions is triggered randomly. The FSM

manages a sequence of animations, with each animation

represented as a state.

Using an FSM facilitates transition from states to states

and allows for dynamic switching between Interactions.

This is notably useful for Smart Locations as multiple

Actions may start at a same state. Alternatively, this can

also be achieved with a Behavior Tree (BT).

The Interupt() functions are essential for

reacting to the player’s actions, however, the FSM

should include one or more interruption states.

A2 SmartLocation implementation
 Below is a simplified implementation of Smart

Locations for a very basic context, it aims to clarify how

they work.

Figure 8. Simple class diagram of Smart Location

(doesn’t take tooling into account)

A SmartLocation script can be attached to a

GameObject in a scene. It has 2 main public fields:

- emitionRate: control the frequency of signal

emissions to find users/participants,

- rules: a list of Rule the NPC will check. If the

preconditions are met, the corresponding

action will be triggered.

The Update() function evaluates the preconditions

for each rule for each participant by calling

CheckPrecondition(target). If the target fulfills

the preconditions, StartAction() starts the action

associated with the rule.

Similar to Smart Objects, the actions are FSM, stored

in the rules here.

Actions may modify the Blackboard or the Tuple

Space, the ApplyAddition() ApplyDeletion()

etc… aim to facilitate the updates on the Blackboard

and Tuple Space.

Tuple Spaces are particularly interesting for Smart

Locations as basic operations can be implemented to

facilitate the manipulation of data. The most useful are

insertion, removal and queries used for checking

preconditions. These are very useful for Tooling and

gain time.

A tuple space can be thought of as a multimap, where

tuples names are used as keys. For Example: the Object

Tuple structure is (“Object”, “type”, ObjectReference).

(“Object”, “Chair”, Chair1) is one of the Objects in the

following figure, or Object(Chair,Chair1) for clarity.

Figure 9. Comparison between data stored in a

Tuple Space vs typical Blackboard

This implementation is based Final Fantasy XV’s

one. For more information, please consult their

conferences on the subject or read their article on Game

AI Pro.

 10

A3 Respawn Trigger

Figure 10. Schematic drawing illustrating how the

grids are activated as the player moves.

The Respawn Trigger size can be mathematically

calculated based on the size of the cells using this

formula :

triggerRespawnSize =
gridCellSize + ((gridCellSize*2 – NPCRenderDistance)*2)

